Exercise 17

In Exercises 13 to 19, use set theoretic or vector notation or both to describe the points that lie in the given configurations.

$$
\text { The line passing through }(-1,-1,-1) \text { and }(1,-1,2)
$$

Solution

The equation for a line is

$$
\mathbf{y}(t)=\mathbf{m} t+\mathbf{b}
$$

where \mathbf{m} is the direction vector, b is the position vector for a point on the line, and t is a parameter. Subtract the two given position vectors to get \mathbf{m}.

$$
\begin{aligned}
\mathbf{m} & =(1,-1,2)-(-1,-1,-1) \\
& =(2,0,3)
\end{aligned}
$$

So the line in question can be written as

$$
\begin{aligned}
\mathbf{y}(t) & =(2,0,3) t+(-1,-1,-1) \\
& =(2 t, 0,3 t)+(-1,-1,-1) \\
& =(2 t-1,-1,3 t-1)
\end{aligned}
$$

Since there's only one arbitrary constant t, the line is one-dimensional. The set of points on the line is described by

$$
\{(2 t-1,-1,3 t-1), t \in \mathbb{R}\} .
$$

